EFFECTIVE THERMAL CONDUCTIVITY OF A
MEDIUM WITH ELLIPSOIDAL PARTICLES

I. N. Shchelechkova UDC 536.24.01

The principal components of the effective thermal conductivity tensor, characterizing station-
ary heat macrotransfer in a dense medium with dispersed ellipsoidal particles of a different
material are calculated by a method suggested in [1]. The case of equally oriented ellipsoids
and of isotropically distributed ones are considered as examples.

1. Consider an averagely homogeneous material congisting of a dense medium with thermal conduc-
tivity Ay, containing particles of another substance with thermal conductivity Ay. The particles are assumed
identical, shaped as ellipsoids of revolution of distinct axis e. The cliipsoid centers are randomly distrib-
uted in space, so that there is no correlation between different positions.

The orientation of the vector e is arbitrary with preferred direction m. For convenience we identify
m with the Z axis of the laboratory coordinate system. The position of the coordinate system (xy, x5, X3),
fixed in an arbitrary ellipsoid, is given by transformation matrix yjk, determined in terms of the Euler
angles, with e in the x3-axis direction. The angular ensemble distribution function of N particles is

Heweo-yay) = ] i, S]’(a)da=1

(1.1)
a=1{p ¥, 0}, da=sin0dpdydd

In the following we denote by angular brackets an ensemble average, and by squarc brackets an aver-
age over a physically small volume containing sufficiently many particles.

The effective thermal conductivity tensor of the material Aj, characterizing heat macrotransfer init,
has two different principal values and is determined as follows
[01= =24 VT, 1Q1= (1 =) [Qu] + p {/ (@) Qu) e
V1= (1 =) 15731+ p\ / @)V 7] de (1.2)
Q= =1V ] = — MV, (Qu] == — Ay [FT5]
where p is the bulk concentration, and the indices 1 and 2 refer to the binder and filler, respectively.

2. According to the method discussed in detail in [1], a real particle perturbation is replaced by a
perturbation of a point dipole D, applied to the particle center. To determine [VT,} the thermal conduc-
tivity problem in a body with complex geometry is replaced by a thermal conductivity problem in a homo-
geneous medium with arbitrary embedded ellipsoids.

As can be shown [1], the average temperature satisfies the equation
Ma<Ty> = ¥d, d={Dn(e)da @.1)

where d is the average dipole moment per unit volume, and n(a) = nf@) is the particle concentration.
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Since the only averagely distinct d_irections in space are V{Tj) and m, it is assumed that
d=aV<T)>+B(V<T> mm (2.2)
where ¢, 8=const, depending on Ay, A,,0,and the particle shape.
Eq. (2.1) is then written in the laboratory coordinate system in the form
A (P10X2 + 8° 1 9YDC(T, > + A" (82 / 023K T, =0
M=d—o, A=4 —a—§

To determine o, 8 consider the effect of an arbitrary embedded ellipsoid on heat transfer in an aniso-
tropic medium @', A") with constant temperature gradient E at infinity. The solution of the problem gives
an expression for VT,, enablingusto calculate d from Eq, (2.1) and to obtain an equation determining & and g.

(2.3)

In the coordinate system
z2=X,y=Y,z2=k'Z, k=0 /N
referring to an arbitrary particle center we have outside the ellipsoid Eq. (2.3) and inside and on the bound-
ary .

MATH=0
‘ 32 a2 ~ 52
;‘2(—133.7+_@T)T2+k2;"2‘3_zf712=0 (2.4)
<T1> =T,, nQW = nQ®, V(T —En, r— 20
It is well known [2] that the solution of the problem stated satisfies the relations
EP — nw QP + EP) = B
E® = VI, QP = —APEP, MY =P =k, AP =k, (2-5)

where Q(z) is the heat flow inside the ellipsoid. Transforming to the coordinate system (x, y, z),the ellip-
soid with depolarization tensor njk = y7ivzkn; transforms to an ellipsoid with depolarization tensor njk =
I3iljkn;, where ny are the principal values. The components of the transformation matrix Ik to its axes
depend on the Euler angles of the new angles, with (I}iIjk) = 0, i #k. We note that the transformation axes
of the ellipsoid, and consegeuntly also nj, depend on cos? 8 and A"/A' only.

From Eq. (2.5) we find the temperature gradient E®, generated in an ellipsoid inserted in an aniso-
tropic medium with temperature gradient E
E® = NpEy, Nyl =8, + fgp /0 — 1) (2.6)
In the laboratory coordinate system we calculate the dipole moment D and d from Egq. (2.1)

D ={@mrs, q=—nE +0E

Di=V (bdin — MNes) Eny di = p (MSin — AKNipd) B @7

where V is the ellipsoid volume. It can be shown that
(Nipd>=0, i#Fk, (N >=(Np)
Comparing Egs. (2.2) and (2.7), we obtain equations determining « and 8 as functions of p, A, X, 0y
a=p A —h{N,D), =4 —
@+ B =ph—ACNspd) @+ B=n —2" (28)

3. The effective thermal conductivity Ajk is calculated from Eq. (1.2). By (2.6) and (2.8) the average
heat flow and average temperature gradient are

—AY <T1>; i= 1, 2

Qi = —{(1 — p) Ay + PALNWD} VLT = {_ AVTD: i=3

3.1)
VT = (1 — p + p<V)) VKT
In the dimensionless variables
=R /A, By =8 =AM, Es=A"Th, Ajp=Ain I

the principal components A; of the effective thermal conductivity tensor Aji are:
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in the preferred directions of ellipsoid orientation

As =53 (1 —p + oWVt (3.2)

in any direction perpendicular to it -
A=A, = L (1—p+ oSN )t
where (Ny;}is evaluated by Eq. (2.6) and Eqs. (2.8), determining A\, A",

When the distant ellipsoid axes are parallel {the angular distribution function being f(a) = 1/2 7725(cos
6-1)]

(3-3)

(Wagd= {1 + iy (A / V' — 1)}t

(Nyd>=(Nyd= {1 4 n, (A, / M — 1)} (3.4)
From Eqgs. (3.2) and (3.3) the principal values of the effective thermal conductivity tensor are
As =18 (1 —n)+ %) {1 —R+pR)E—un (1 — p)™
Ai=hEd )+ —mp{d4nt+pd—n)Ei—x(—n) (1 —p)?
’ ;i = 7:3

(3.5)

It is somewhat complicated to calculate & from Eq, (2.8)and i = fi(4 /), the depolarization coefficient
in the transformed coordinate system [see Eq. (2.4)].

For an isotropic angular distribution function f@) = 1/87~2 the effective thermal conductivity tensor is
spherical. Denoting the depolarization coefficient n3 byn (ny = n; = (1-~n)/2) and taking into account that

Niw = vuvin {4 + i Ay /2 — D)}, Cyd= Y5
we obtain from Eq. (2.8) a cubic equation for ¢ = A'/A4
Bl—nm)+ 8 Xl —n+20) —px(*s—n) —(1—

—p) (1 —n)} + Ex {xn(i-_—n)—pn(n+1/3)—(1-—p)(1—n+2n’)}—x2n(1—n)(1-—-p)=0

The coefficients are such that only one positive root is possible. Based on Egs. (3.2), (3.3), and (3.6),
the dimensionless effective thermal conductivity of the material is

(3.6)

A=2/k=E8A{(1 —p) A+ pE (*1s — n) + pkx (n +Y5)}?
A=8(—n)+Ex(=n4 209 4xn{d —n) 3.7

For fixed p y, < 1 the quantity A has a maximum at n = 1/3, corresponding to spherical particles. If
w >1, Ais minimum at n =1/3. The spherical embedding was considered in detail in [1]. Fig. 1 shows the
dependence of A on log at p = 0.1 (dotted line), and at p = 0.3 (full time). The curves 1 correspond to r
lens shape (n = 0.9), and curves 2 to a needle shape (n = 0.5). Curves 3 (n =1/3), lying for » < 1 above, and
for % > 1 below the corresponding curves 1, 2, characterize the model of "overlapping" spheres [1].

We stress that the equations obtained are applicable to sufficiently
small p, since the distribution function of particle centers used achieves
particle overlap in space at high bulk concentrations p. Therefore, obvi-
ously, ¢ in Eq. (3.6) and the effective thermal conductivity A in Eq. (3.7)
become infinite at n— = and p >p,, P4 =n(1—n)/(n+1/3) (max p, =1/3 is
also reached for n = 1/3).

a

For spherical embedding it is possible to introduce (see [1]) a dis-
tribution function of centers, taking into account that particles do not over-
lap. Comparison of results for the models of "overlapping” and "nonover-
lapping" spheres showed that the values of effective thermal conductivity A
are close for p<p* = 1/3 and » € 10.

We note that the corresponding problems of determining the effec-
tive thermal conductivity, the dielectric function, and the electric conduc~
tivity are mathematically equivalent.

.
g =2
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